Argonne°

NATIONAL LABORATORY

Finding High-Quality Local Minima in
Derivative-Free Optimization

Jeffrey Larson Stefan Wild

Argonne National Laboratory

October 20, 2015

@ U5 oEpARTHENT OF

Motivation
» We want to identify distinct, “high-quality”, local minimizers of
minimize f(x)

I<x<u
x e R"

» High-quality can be measured by more than the objective.

2 of 26

Motivation

» We want to identify distinct, “high-quality”, local minimizers of

minimize f(x)
I<x<u
x € R"

» High-quality can be measured by more than the objective.

» Derivatives of f may or may not be available.

2 of

26

Motivation

v

We want to identify distinct, “high-quality”, local minimizers of

minimize f(x)
I<x<u
x € R"

v

High-quality can be measured by more than the objective.

v

Derivatives of f may or may not be available.

v

The simulation f is likely using parallel resources, but it does not
utilize the entire machine.

.\ ___
Why concurrency? Tiled QR example

160

140 |-

120 |

n
Z w00t
o
—_
=
O Rt
=}
g
o
3
& 60

e FlatTree(TS)

40 & = PlasmaTree(TS) (best)
= FlatTree(TT)

| PlasmaTree(TT) (best)
= Fibonacci(TT)
m— Greedy

i i i i I S N i i
1 2 3 4 5 6 780910 20 30 40
q
[Bouwmeester, et al., Tiled QR Factorization Algorithms, 2011]

ﬁ,
AEW S oroe

Global optimization is difficult

Theorem (T6rn and Zilinskas, Global Optimization, 1989)

An algorithm converges to the global minimum of any continuous f on
a domain D if and only if the algorithm generates iterates that are
dense in D.

P 4 of 26

Global optimization is difficult

Theorem (T6rn and Zilinskas, Global Optimization, 1989)

An algorithm converges to the global minimum of any continuous f on
a domain D if and only if the algorithm generates iterates that are
dense in D.

» Either assume additional properties about the problem
» convex f
» separable f
» finite domain D

4 of 26

Global optimization is difficult

Theorem (T6rn and Zilinskas, Global Optimization, 1989)

An algorithm converges to the global minimum of any continuous f on
a domain D if and only if the algorithm generates iterates that are
dense in D.

» Either assume additional properties about the problem

» convex f
» separable f
» finite domain D

» Or possibly wait a long time (or forever)

o‘\. }'f‘; :7

4 of 26

Global optimization is difficult

Theorem (T6rn and Zilinskas, Global Optimization, 1989)

An algorithm converges to the global minimum of any continuous f on
a domain D if and only if the algorithm generates iterates that are
dense in D.

» Either assume additional properties about the problem
» convex f

separable f

finite domain D

concurrent evaluations of f

vyYyy

» Or possibly wait a long time (or forever)

o‘\. }'f‘; :7

4 of 26

Global optimization is difficult

Theorem (T6rn and Zilinskas, Global Optimization, 1989)

An algorithm converges to the global minimum of any continuous f on
a domain D if and only if the algorithm generates iterates that are
dense in D.

» Either assume additional properties about the problem

» convex f

separable f

finite domain D

concurrent evaluations of f

vyYyy

» Or possibly wait a long time (or forever)

The theory can be more than merely checking that a method generates
iterates which are dense in the domain.

4 of 26

Global optimization is difficult

Theorem (T6rn and Zilinskas, Global Optimization, 1989)

An algorithm converges to the global minimum of any continuous f on
a domain D if and only if the algorithm generates iterates that are
dense in D.

» Either assume additional properties about the problem
» convex f

separable f

finite domain D

concurrent evaluations of f

vyYyy

» Or possibly wait a long time (or forever)

The theory can be more than merely checking that a method generates
iterates which are dense in the domain.

An algorithm must trade-off between “refinement” and “exploration”.

4 of 26

DIRECT

1.0

Iteration: O; r_k: Inf

L T[]

9.0

7.8

16.6

5.4

4.2

3.0

1.8

0.6

5 of 26

DIRECT

1.0

Iteration: 1; r_k: Inf

L T[]

9.0

7.8

16.6

5.4

4.2

3.0

1.8

0.6

5 of 26

DIRECT

1.0

Iteration: 2; r_k: Inf

L T[]

9.0

7.8

16.6

5.4

4.2

3.0

1.8

0.6

5 of 26

DIRECT

1.0

Iteration: 3; r_k: Inf

L T[]

9.0

7.8

16.6

5.4

4.2

3.0

1.8

0.6

5 of 26

DIRECT

1.0

Iteration: 4; r_k: Inf

L T[]

9.0

7.8

16.6

5.4

4.2

3.0

1.8

0.6

5 of 26

DIRECT

1.0

Iteration: 5; r_k: Inf

L T[]

9.0

7.8

16.6

5.4

4.2

3.0

1.8

0.6

5 of 26

DIRECT

1.0

Iteration: 6; r_k: Inf

L T[]

9.0

7.8

16.6

5.4

4.2

3.0

1.8

0.6

5 of 26

DIRECT

1.0

Iteration: 7; r_k: Inf

L T[]

9.0

7.8

16.6

5.4

4.2

3.0

1.8

0.6

5 of 26

DIRECT

1.0

Iteration: 8; r_k: Inf

L T[]

9.0

7.8

16.6

5.4

4.2

3.0

1.8

0.6

5 of 26

DIRECT

1.0

Iteration: 9; r_k: Inf

L T[]

9.0

7.8

16.6

5.4

4.2

3.0

1.8

0.6

5 of 26

DIRECT

1.0

Iteration: 10; r_k: Inf

L T[]

9.0

7.8

16.6

5.4

4.2

3.0

1.8

0.6

5 of 26

DIRECT

1.0

Iteration: 11; r_k: Inf

L T[]

9.0

7.8

16.6

5.4

4.2

3.0

1.8

0.6

5 of 26

DIRECT

1.0

Iteration: 12; r_k: Inf

L T[]

9.0

7.8

16.6

5.4

4.2

3.0

1.8

0.6

5 of 26

DIRECT

1.0

Iteration: 13; r_k: Inf

1.0

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

5 of 26

DIRECT

1.0

Iteration: 14; r_k: Inf

1.0

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

5 of 26

DIRECT

1.0

Iteration: 15; r_k: Inf

1.0

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

5 of 26

DIRECT

1.0

Iteration: 16; r_k: Inf

1.0

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

5 of 26

DIRECT

1.0

Iteration: 17; r_k: Inf

L T[]

9.0

7.8

16.6

5.4

4.2

3.0

1.8

0.6

5 of 26

DIRECT

1.0

Iteration: 18; r_k: Inf

L T[]

9.0

7.8

16.6

5.4

4.2

3.0

1.8

0.6

5 of 26

DIRECT

1.0

Iteration: 19; r_k: Inf

L T[]

9.0

7.8

16.6

5.4

4.2

3.0

1.8

0.6

5 of 26

DIRECT

1.0

Iteration: 20; r_k: Inf

L T[]

9.0

7.8

16.6

5.4

4.2

3.0

1.8

0.6

5 of 26

DIRECT

1.0

Iteration: 21; r_k: Inf

1.0

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

5 of 26

DIRECT

1.0

Iteration: 22; r_k: Inf

1.0

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

5 of 26

DIRECT

1.0

Iteration: 23; r_k: Inf

1.0

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

5 of 26

DIRECT

1.0

Iteration: 24; r_k: Inf

1.0

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

5 of 26

DIRECT

1.0

Iteration: 25; r_k: Inf

1.0

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

5 of 26

DIRECT

1.0

Iteration: 50; r_k: Inf

9.0

7.8

16.6

5.4

4.2

3.0

1.8

0.6

5 of 26

DIRECT

Iteration: 99; r_k: Inf

9.0

7.8

16.6

5.4

4.2

3.0

1.8

LT T T[T T[T T

0.6

5 of 26

DIRECT

Iteration: 199; r_k: Inf

1.0

5 of 26

Multistart Methods

Given some local optimization routine L:

Algorithm 1: General Multistart

for k=1,2,... do
Evaluate f at N points drawn from D

Start L at some set (possibly empty) of previously evaluated points

Multistart Methods

Given some local optimization routine L:

Algorithm 1: General Multistart

for k=1,2,... do
Evaluate f at N points drawn from D

Start L at some set (possibly empty) of previously evaluated points

» Get to use problem specific local optimization routines.

» Possibly multiple levels of parallelism (objective, local method, global
method); L may involve many sequential evaluations of f...

Multistart Methods

Given some local optimization routine L:

Algorithm 1: General Multistart

for k=1,2,... do
Evaluate f at N points drawn from D

Start L at some set (possibly empty) of previously evaluated points

» Get to use problem specific local optimization routines.

» Possibly multiple levels of parallelism (objective, local method, global
method); L may involve many sequential evaluations of f...

» Which points should start runs?

» If resources are limited, how should points from each run receive
priority?

Multistart Methods

Given some local optimization routine L:

Algorithm 1: General Multistart

for k=1,2,... do
Evaluate f at N points drawn from D

Start L at some set (possibly empty) of previously evaluated points

» Get to use problem specific local optimization routines.

» Possibly multiple levels of parallelism (objective, local method, global
method); L may involve many sequential evaluations of f...

» Which points should start runs?

» If resources are limited, how should points from each run receive
priority?

> Ideally, only one run is started for each minima.
» Exploring by sampling. Refining with L.

Multi-Level Single Linkage

Given some local optimization routine L:

Algorithm 2: MLSL

for k=1,2,... do
Sample f at N random points drawn uniformly from D

Start L at all sample points x:

» that has yet to start a run
» Bx : |lx — x| < rk and f(x;) < f(x)

[Rinnooy Kan and Timmer, Mathematical Programming, 39(1):57—-78, 1987]

Multi-Level Single Linkage

Given some local optimization routine L:

Algorithm 2: MLSL

for k=1,2,... do
Sample f at N random points drawn uniformly from D
Start L at all sample points x:
» that has yet to start a run

» Bx : |lx — x| < rk and f(x;) < f(x)

[Rinnooy Kan and Timmer, Mathematical Programming, 39(1):57—-78, 1987]

» Doesn’t naturally translate when evaluations of 7 are limited

» Ignores some points when deciding where to start L

Multi-Level Single Linkage

1b T T
0.9

k =1; r, = 0.71575;

T

0.3

0.2

8 of 26

Multi-Level Single Linkage

1§ T
0.9 %

k =1; r, = 0.71575;

T

0.3

0.2

0 0.1

8 of 26

Multi-Level Single Linkage

o‘\. }'f‘; :7

k = 2; r, = 0.60537;

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

8 of 26

Multi-Level Single Linkage

k = 3; r; = 0.53603;

o‘\. }'f‘; :7

8 of 26

Multi-Level Single Linkage

k = 4; r, = 0.48825;

8 of 26

Multi-Level Single Linkage

k = 5; rp = 0.45268;

8 of 26

Multi-Level Single Linkage

k =T; r, = 0.40208;

8 of 26

Multi-Level Single Linkage

k = 18; r, = 0.28209;

8 of 26

Multi-Level Single Linkage

k = 20; r, = 0.27073;

8 of 26

Multi-Level Single Linkage

k = 22; r;, = 0.26079;

8 of 26

Multi-Level Single Linkage

» f € C!, with local minima in the interior of D, and the distance
between these minima is bounded away from zero.

> L is strictly descent and converges to a minimum (not a stationary
point).

R D TR G

a 9 of 26

Multi-Level Single Linkage

» f € C!, with local minima in the interior of D, and the distance
between these minima is bounded away from zero.

> L is strictly descent and converges to a minimum (not a stationary
point).

Fe = %\/r (1 + g) vol (D) U'(l)jka 1)

Theorem
If . — 0, all local minima will be found almost surely.

°‘,' 9 of 26

Multi-Level Single Linkage

» f € C!, with local minima in the interior of D, and the distance
between these minima is bounded away from zero.

> L is strictly descent and converges to a minimum (not a stationary
point).

Fe = %\/r (1 + g) vol (D) U'(l)jka 1)

Theorem
If . — 0, all local minima will be found almost surely.

If r is defined by (1) with o > 4, even if the sampling continues
forever, the total number of local searches started is finite almost surely.

o 9 of 26

POSMM

MLSL: (S2)—~(S4)
X e S

(S2) Ix € Sk with
[[1X = x|| < rk and f(x) < f(X)]
(S3) X has not started a local
optimization run

(S4) X is at least . from 0D and v
from known local minima

10 of 26

POSMM

MLSL: (S2)—(S4)
X e S

(S1) Px € Ly with

[IIX = x|| < re and f(x) < f(X)]
(S2) Ix € Sk with

[II%X — x|| < r¢ and f(x) < f(X)]
(S3) X has not started a local

optimization run

(S4) X is at least . from 0D and v
from known local minima

POSMM: (S1)-(S4), (L1)—(L6)
X e Ly
(Ll) ﬂX € Ly
[II%x = x|l < r¢ and f(x) < f(X)]
(L2) Px € Sk with
[IIX — x|| < rx and f(x) < f(X)]
(L3) X has not started a local
optimization run
(L4) X is at least u from 0D and v
from known local minima
(L5) X is not in an active local
optimization run and has not
been ruled stationary
(L6) Jrk-descent path in Hy from
some x € Sy satisfying (S2-54)
to X

MMMMM

MMMMM

MMMMM

MMMMM

MMMMM

MMMMM

K
5\ e

. N
%. . N

lteration: 7; r k: 0.605
®
[]
[]
% .
[]
[]

=
S

=
S

as
%
\

POSMM

Iteration: 37; r_k: 0.589

11 of 26

POSMM

Iteration: 38; r_k: 0.574

11 of 26

POSMM

Iteration: 39; r_k: 0.560

11 of 26

POSMM

Iteration: 40; r_k: 0.548

11 of 26

POSMM

Iteration: 41; r_k: 0.536

POSMM

Iteration: 42; r_k: 0.525

11 of 26

POSMM

Iteration: 43; r_k: 0.515

11 of 26

POSMM

Iteration: 44; r_k: 0.497

[]
[]
[]
[]
7
7
7
7
7
7
/
u
N
N\
\ N\

11 of 26

POSMM

Iteration: 45; r_k: 0.480

11 of 26

POSMM

Iteration: 80; r_k: 0.281

11 of 26

POSMM

Iteration: 81; r_k: 0.279

11 of 26

POSMM

Iteration: 82; r_k: 0.276

11 of 26

POSMM

Iteration: 83; r_k: 0.274

11 of 26

POSMM

Iteration: 84; r_k: 0.272

11 of 26

POSMM

Iteration: 85; r_k: 0.270

11 of 26

POSMM

Iteration: 86; r_k: 0.268

11 of 26

POSMM

Iteration: 87; r_k: 0.266

11 of 26

POSMM

Iteration: 88; r_k: 0.264

11 of 26

POSMM

Iteration: 89; r_k: 0.263

11 of 26

POSMM

Iteration: 90; r_k: 0.262

11 of 26

POSMM

Iteration: 91; r_k: 0.261

11 of 26

POSMM

Iteration: 92; r_k: 0.260

11 of 26

POSMM

Iteration: 93; r_k: 0.259

11 of 26

POSMM

Iteration: 94; r_k: 0.258

11 of 26

POSMM

Iteration: 95; r_k: 0.257

11 of 26

POSMM

Iteration: 96; r_k: 0.256

11 of 26

POSMM

Iteration: 97; r_k: 0.255

11 of 26

POSMM

Iteration: 98; r_k: 0.255

11 of 26

POSMM

Iteration: 99; r_k: 0.254

11 of 26

.
Properties of the local optimization method

Necessary:
» Honors a starting point
» Honors bound constraints

12 of 26

N
Properties of the local optimization method

Necessary:
» Honors a starting point

» Honors bound constraints

ORBIT satisfies these [Wild, Regis, Shoemaker, SIAM-JOSC, 2008]

BOBY QA satisfies these [Powell, 2009]

12 of 26

N
Properties of the local optimization method

Necessary:
» Honors a starting point

» Honors bound constraints

ORBIT satisfies these [Wild, Regis, Shoemaker, SIAM-JOSC, 2008]
BOBY QA satisfies these [Powell, 2009]

Possibly beneficial:

» Can return multiple points of interest

v

Reports solution quality/confidence at every iteration

v

Can avoid certain regions in the domain

» Uses a history of past evaluations of f

v

Uses additional points mid-run

APOSSM Theory

Given the same assumptions as MLSL, APOSSM will start a finite
number of local optimization runs with probability 1.

e 13 of 26

APOSSM Theory

Given the same assumptions as MLSL, APOSSM will start a finite
number of local optimization runs with probability 1.

Assumption

There exists Ky < oo so that for any Ky consecutive iterations, there is
a positive (bounded away from zero) probability of evaluating a point
from the sample stream and each existing local optimization run.

‘9\,7 _
° = 13 of 26

APOSSM Theory

Theorem

Given the same assumptions as MLSL, APOSSM will start a finite
number of local optimization runs with probability 1.

Assumption

There exists Ky < oo so that for any Ky consecutive iterations, there is
a positive (bounded away from zero) probability of evaluating a point
from the sample stream and each existing local optimization run.

Theorem

Each x* € X* will almost surely be either identified in a finite number of
evaluations or have a single local optimization run that is converging
asymptotically to it.

13 of 26

Measuring Performance

GLODS Global & local optimization using direct search [Custédio, Madeira
(JOGO, 2014)]
Direct Serial DIRECT [D. Finkel's MATLAB code]
pVTDirect Parallel DIRECT [He, Watson, Sosonkina (TOMS, 2009)]
Random Uniform sampling over domain (as a baseline)
POSMM
» Local optimization method
» ORBIT [wild, Regis, & Shoemaker (SIAM JOSC, 2008)]
» BOBYQA [Powell, 2009]
> Initial sample size: 10n

» Each method evaluates Direct’s 2n + 1 initial points.

& 14 of 26

2 =
< NA\C/X
o %
o]
T
(%2]
=)
O
”///MA/ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
X
e
. / X
,\\\\/, ,\\\\/, ,\\\\/,
x| |) I] I
T T ' E g!
Ol § | - 'O &
<< 1= - —_— v > +— 1 2 mw,
2| 2 2 =
< T o ,a&,
| | @ |
=2 | , ” , ” ,

(A)POSMM Diagram

(A)POSMM Manager

Algorithm 3: Manager Logic

while k < fevalmax do
MPI.recv(MPI.LANY _SOURCE)

if Received from Custodian then
Check Hy

| Add new point to Q,
if Received from Worker then
Update Hy
Possibly get a Custodian working on the next point
Run decide_where_to_start
| Possibly update Q;
if sync=False OR All Workers/Custodians are done then
| Give from Q. or Rs to available worker(s)

POSMM

MLSL: (S2)-(S4)
X € S

(S1) #x € Ly with

[II%X — x|| < re and f(x) < f(X)]
(S2) $x € Sk with

[I%X — x|| < rx and f(x) < f(X)]
(S3) X has not started a local

optimization run

(S4) X is at least u from 0D and v
from known local minima

POSMM: (S1)—(S4), (L1)—(L6)
X € Ly
(Ll) ﬂX € Ly
1% = x|l < re and f(x) < f(X)]
(L2) $x € Sk with
(1% = x|l < re and f(x) < f(X)]
(L3) X has not started a local
optimization run

(L4) % is at least u from 0D and v
from known local minima

(L5) %X is not in an active local
optimization run and has not
been ruled stationary

(L6) Jr-descent path in Hj from
some x € Sy satisfying (S2-54)
to X

Measuring Performance

Notation:

Let X* be the set of all local minima of f.
Let 7]y be the ith smallest value {f(x*)|x* € X*}.

Let x(*,.) be the element of X* corresponding to the value f(’f)

The global minimum has been found at a level 7 > 0 at batch k if an
algorithm it has found a point X satisfying:

F(2) — 1y < (1=7) (FOo) = 7).

where Xxj is the starting point for problem p.

° 18 of 26

Measuring Performance

Notation:

Let X* be the set of all local minima of f.
Let 7]y be the ith smallest value {f(x*)|x* € X*}.
Let x(*,.) be the element of X* corresponding to the value f(’f)

The j best local minima have been found at a level 7 > 0 at batch k if:
Hx(*l), . ,x(*kl)} ﬂ{x(*,.) : Ix € Hy with Hx—x(*,.)H < r,,('r)H =/j—-1

o N {3 - 3x € Hewith x| < | =i-i+ 1,

where j and j are the smallest and largest integers such that

n/Tvol(D)I(5+1)
e

fUif) =15 = f&f) and where r,(T) =

o 18 of 26

Problems considered

GKLS problem generator [Gaviano et al., “Algorithm 829” (TOMS, 2003)]

v

600 synthetic problems with known local minima

v

10 local minima in the unit cube with a unique global minimum

v

100 problems for each dimension

v

5 replications (different seeds) for each problem

5000 evaluations

v

19 of 26

Data Profiles

T T T

—&— POSMM 4 workers
-@- Random Sampling
0.91| - A = pVTdirect 4 workers
—w— Direct (serial)
0.8H GLODS (serial)
-« - Direct (idealized)

0.7

0.6

0.5

d(e)

0.4

0.3

0.2

0.1

20 of 26

Within 1/ % of 3 best minima

T T T T T T T

Data Profiles

—&— POSMM 4 workers
. -@- Random Sampling
0.91| - A -pVTdirect 4 workers 7
—w— Direct (serial)
0.8h GLODS (serial)
-« - Direct (idealized)

20 of 26

Within 1/ % of 7 best minima

Data Profiles

+VPOSM'M 4 wc;rkers ' ' ' ' ' ' '
-~ Random Sampling
0.91| - A -pVTdirect 4 workers 7
—w— Direct (serial)
0.8h GLODS (serial) g
-« - Direct (idealized)
0.7
0.6
S o5
=
0.4
0.3F !
0.2f !
01 D oy de
k .--“'- ’
0 I I I 37

1 2 4 8 16 32 ' 64 " 128 256 512 1024

20 of 26

 —
Data Profiles (increasing workers)

Within 1/ % of 7 best minima

T T T T T

—=—2 workers, BOBYQA |
' =@= 4 workers, BOBYQA
0971 = A =8 workers, BOBYQA 1

. I 1 1
1 2 4 8 16 32 64 128 256 512

21 of 26

 —
Data Profiles (increasing workers)

Within 1/ % of 7 best minima

T T T T

—&— 2 workers, BOBYQA (idealized)
- =@= 4 workers, BOBYQA (idealized)

9f = A =8 workers, BOBYQA

0.8 4

21 of 26

 —
Data Profiles (increasing workers)

Within 1/ % of 3 best minima

T T T T T T T T T
== 2 workers, BOBYQA
=@= 4 workers, BOBYQA
0971 = A =8 workers, BOBYQA 7
0.8 4
0.7
0.6
—
S osp
=
04
03
0.2
-
"
0.1 -
ph] . .‘_!r
0 L L AP=T L L L L L L
1 2 4 8 16 32 64 128 256 512 1024

21 of 26

 —
Data Profiles (increasing workers)

Within 1/ % of 3 best minima

T T T T

—m— 2 workers, BOBYQA (idealized)
' =@= 4 workers, BOBYQA (idealized)

09 LA -8 workers, BOBYQA

0.8 4

21 of 26

 —
Data Profiles (increasing workers)

Within 1/ % of 3 best minima

T T T T T T T

—&— POSMM 4 workers
. -@- Random Sampling
0.91| - A -pVTdirect 4 workers 7
—w— Direct (serial)
0.8H GLODS (serial)
-« - Direct (idealized)

21 of 26

 —
Data Profiles (increasing workers)

709~ iy < (1=1079) (o) — 1))

—=—2 workers, BOBYQA ax
' =@= 4 workers, BOBYQA ¥ S -
0-91| = A =8 workers, BOBYQA . .."]

64 128

21 of 26

 —
Data Profiles (increasing workers)

709~ iy < (1=1079) (o) — 1))

—2 wo%kelrs7 BOBY'QA (idealizé(i)
'=@= 4 workers, BOBYQA (idealized)
= A =8 workers, BOBYQA

0.9H

0.8

0.7

d()

0.4r

0.3

0.2

0.1

16 32 64

21 of 26

 —
Data Profiles (vs random)

Within 1/ % of 10 best minima

01 —s— RandSamp I
-o- W=2, P=0, sync=True
(‘ | | | T T T T
200 400 600 800 1000 1200 1400
«

22 of 26

 —
Data Profiles (vs random)

Within 1/ % of 10 best minima

' —s— RandSamp I
! - W=2, P=0), sync=True
0 L L L I I I I
200 400 600 800 1000 1200 1400
(6

22 of 26

Data Profiles (vs random)

Within 1/ % of 5 best minima

—s— RandSamp
-e- W=2, P=0, sync=True

400

600

800 1000

1200

1400

22 of 26

Data Profiles (vs random)

—6r(n
Within 1/ %ﬂg“) of best minimum

1 — @ @
“_‘,‘ & !
09 q
08l ,
!
'
0.7 ' 4
'
06! g
CS 0.5 *_i q
3]
1
0.4 fi R
!
03!
!
!
0.2]
!
01p —a— RandSamp
1
! -o- W=2 P=0, sync=True
o ——u - o—
200 800 1000 1200 1400
«

22 of 26

Data Profiles (vs random)

| ARG ,
9 (N
-10
sl |
-20
7k |
-30
6L |
-40
50 |
-50
ar l -60

w
I
I
N
o

- o
\ J T
\ P
E
L
| 1
© ©
o o

22 of 26

 —
Data Profiles (forcing runs)

0~ fsy < (1107 (60) ~ £

—a— W=8, sync=True, F=0
-e- W=8, sync=True, F=1]
- A-W=8, sync=True, F=2
—v— W=8, sync=True, F=4 ||

W=8, sync=True, F=8

200 400 600 800 1000 1200
«

23 of 26

 —
Data Profiles (forcing runs)

Within 1/ % of 3 best minima

0.9+ 1
0.8
0.7
0.6}
S os}
]
0.4
0.3
—a— W=8, sync=True, F=0
0.2r -o- W=8, sync=True, F=1]
- A -W=8, sync=True, F=2
0.1 —v— W=8, sync=True, F=4
W=8, sync=True, F=8
O "‘ T T T

200 400 600 800 1000 1200 1400
(07

23 of 26

Closing Remarks

» Concurrent function evaluations can locate multiple minima while
efficiently finding a global minimum.

24 of 26

Closing Remarks

» Concurrent function evaluations can locate multiple minima while
efficiently finding a global minimum.

» The ability to find many minima scales well with the number of
workers.

Questions:
» Finding (or designing) the best local solver for our framework?

» Best way to process the queue?

(A)POSMM Manager

Algorithm 3: Manager Logic

while k < fevalmax do
MPl.recv(MPI.LANY _SOURCE)

if Received from Custodian then
Check Hy

| Add new point to Q,

if Received from Worker then
Update Hy
Possibly get a Custodian working on the next point
Run decide_where_to_start

| Possibly update @,
if sync=False OR All Workers/Custodians are done then
| Give from Q, or Rs to available worker(s)

Pausing runs

1.0

Iteration: O; r_k: Inf

1.0

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

26 of 26

Pausing runs

1.0

Iteration: 1; r k: 0.763

1.0

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

26 of 26

Pausing runs

1.0

Iteration: 2; r_k: 0.689

1.0

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

26 of 26

Pausing runs

1.0

Iteration: 3; r k: 0.623

1.0

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

26 of 26

Pausing runs

1.0

Iteration: 4; r_k: 0.574

1.0

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

26 of 26

Pausing runs

1.0

Iteration: 5; r_k: 0.574

1.0

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

26 of 26

Pausing runs

1.0

Iteration: 6; r_k: 0.574

0.8}

0.6f

0.4

0.2}

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

26 of 26

Pausing runs

1.0

Iteration: 7; r_k: 0.574

0.8}

0.6f

0.4

0.2}

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

26 of 26

Pausing runs

1.0

Iteration: 8; r_k: 0.574

0.8

0.6f

0.4

0.2}

0.2

0.4

1.0

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

26 of 26

Pausing runs

1.0

Iteration: 9; r_k: 0.574

0.8

0.6f

0.4

0.2

0.0

;

0.0

0.2

1.0

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

26 of 26

Pausing runs

1.0

0.8

0.6

0.4

0.2

0.0

0.0

y

|

Iteration: 10; r_k: 0.574

1.0

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

26 of 26

Pausing runs

1.0

0.8

0.6

0.4

0.2

Iteration: 11; r_k: 0.574

1.0

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

26 of 26

Pausing runs

1.0

0.8

0.6

0.4

0.2

Iteration: 12; r k: 0.574

1.0

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

26 of 26

Pausing runs

1.0

Iteration: 13; r_k: 0.574

0.8

0.6f

0.4

0.2}

0.2

0.4

1.0

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

26 of 26

Pausing runs

1.0

Iteration: 14; r_k: 0.574

0.8

0.6f

0.4

0.2}

0.2

0.4

1.0

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

26 of 26

Pausing runs

1.0

Iteration: 15; r k: 0.574

0.8

0.6f

0.4

0.2}

0.2

0.4

1.0

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

26 of 26

Pausing runs

Iteration: 16; r_k: 0.574

1.0 —
—9.0
0.8 7.8
46.6
0.6f
5.4
0.4 4.2
3.0
0.2} —
—1.8
0.0 - - - - — 0.6
0.0 0.2 0.4 0.6 0.8 1.0

26 of 26

Pausing runs

1.0

0.8

0.6

0.4

0.2

Iteration: 17; r_k: 0.574

1.0

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

26 of 26

Pausing runs

1.0

0.8

0.6

0.4

0.2

Iteration: 18; r_k: 0.574

1.0

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

26 of 26

Pausing runs

1.0

0.8

0.6

0.4

0.2

Iteration: 19; r_k: 0.574

1.0

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

26 of 26

Pausing runs

1.0

0.8

0.6

0.4

0.2

Iteration: 20; r_k: 0.574

1.0

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

26 of 26

Pausing runs

1.0

0.8

0.6

0.4

0.2

Iteration: 21; r k: 0.574

1.0

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

26 of 26

Pausing runs

1.0

0.8

0.6

0.4

0.2

Iteration: 22; r_k: 0.574

1.0

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

26 of 26

Pausing runs

1.0

0.8

0.6

0.4

0.2

Iteration: 23; r_k: 0.574

1.0

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

26 of 26

Pausing runs

1.0

Iteration: 24; r_k: 0.574

0.8

0.6

0.4

0.2

1.0

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

26 of 26

Pausing runs

1.0

Iteration: 25; r_k: 0.560

0.8

0.6

0.4

0.2

1.0

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

26 of 26

Pausing runs

1.0

Iteration: 26; r_k: 0.548

0.8

0.6

0.4

0.2

1.0

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

26 of 26

Pausing runs

1.0

Iteration: 27; r_k: 0.536

0.8

0.6

0.4

0.2

1.0

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

26 of 26

Pausing runs

1.0

Iteration: 28; r_k: 0.525

0.8

0.6

0.4

0.2

1.0

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

26 of 26

Pausing runs

1.0

Iteration: 29; r_k: 0.515

0.8

0.6

0.4

0.2

1.0

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

26 of 26

Pausing runs

1.0

0.8

0.6

0.4

0.2

Iteration: 30; r_k: 0.506

1.0

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

26 of 26

Pausing runs

1.0

0.8

0.6

0.4

0.2

Iteration: 31; r_k: 0.497

1.0

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

26 of 26

Pausing runs

1.0

0.8

0.6

0.4

0.2

Iteration: 32; r_k: 0.488

1.0

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

26 of 26

Pausing runs

1.0

0.8

0.6

0.4

0.2

Iteration: 33; r_k: 0.480

1.0

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

26 of 26

Pausing runs

1.0

0.8

0.6

0.4

0.2

Iteration: 34; r_k: 0.473

1.0

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

26 of 26

Pausing runs

1.0

0.8

0.6

0.4

0.2

Iteration: 35; r_k: 0.466

1.0

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

26 of 26

Pausing runs

1.0

0.8

0.6

0.4

0.2

Iteration: 36; r_k: 0.459

1.0

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

26 of 26

Pausing runs

1.0

Iteration: 37; r_k: 0.453

1.0

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

26 of 26

Pausing runs

1.0

Iteration: 38; r_k: 0.435

1.0

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

26 of 26

Pausing runs

1.0

Iteration: 39; r_k: 0.420

1.0

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

26 of 26

Pausing runs

Iteration: 40; r_k: 0.406

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

26 of 26

Pausing runs

Iteration: 41; r_k: 0.394

1.0

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

26 of 26

Pausing runs

Iteration: 42; r_k: 0.383

1.0

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

26 of 26

Pausing runs

Iteration: 43; r_k: 0.373

1.0

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

26 of 26

Pausing runs

Iteration: 44; r_k: 0.364

26 of 26

Pausing runs

Iteration: 45; r_k: 0.356

26 of 26

Pausing runs

Iteration: 46; r_k: 0.348

26 of 26

Pausing runs

Iteration: 47; r_k: 0.341

26 of 26

Pausing runs

Iteration: 48; r_k: 0.334

26 of 26

Pausing runs

Iteration: 49; r_k: 0.328

26 of 26

Pausing runs

1.0

Iteration: 50; r_k: 0.322

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

26 of 26

Pausing runs

1.0

Iteration: 51; r_k: 0.316

1.0

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

26 of 26

Pausing runs

1.0

Iteration: 52; r_k: 0.311

1.0

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

26 of 26

Pausing runs

1.0

Iteration: 53; r_k: 0.306

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

26 of 26

Pausing runs

1.0

Iteration: 54; r_k: 0.301

1.0

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

26 of 26

Pausing runs

1.0

Iteration: 55; r_k: 0.297

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

26 of 26

Pausing runs

1.0

Iteration: 56; r_k: 0.292

1.0

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

26 of 26

Pausing runs

1.0

Iteration: 57; r_k: 0.288

1.0

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

26 of 26

Pausing runs

1.0

Iteration: 58; r_k: 0.285

1.0

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

26 of 26

Pausing runs

1.0

Iteration: 59; r_k: 0.281

1.0

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

26 of 26

Pausing runs

Iteration: 60; r_k: 0.277

1.0

—9.0

o (7.8

16.6

5.4

4.2

3.0

—1.8

— 0.6

26 of 26

Pausing runs

1.0

Iteration: 61; r_k: 0.274

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

26 of 26

Pausing runs

1.0

Iteration: 62; r_k: 0.271

1.0

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

26 of 26

Pausing runs

1.0

Iteration: 63; r_k: 0.268

1.0

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

26 of 26

Pausing runs

Iteration: 64; r_k: 0.265

1.0

—9.0

o (7.8

16.6

5.4

4.2

3.0

—1.8

— 0.6

26 of 26

Pausing runs

Iteration: 65; r_k: 0.262

1.0

—9.0

o (7.8

16.6

5.4

4.2

3.0

—1.8

— 0.6

26 of 26

Pausing runs

1.0

Iteration: 66; r_k: 0.259

0.8

0.6

0.4

0.2}

1.0

9.0

7.8

16.6

5.4

4.2

3.0

1.8

0.6

of 26

Pausing runs

1.0

Iteration: 67; r_k: 0.256

0.8

0.6

0.4

0.2}

9.0

7.8

16.6

5.4

4.2

3.0

1.8

0.6

of 26

Pausing runs

Iteration: 68; r_k: 0.255

26

Pausing runs

1.0

Iteration: 69; r_k: 0.253

1.0

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

26 of 26

Pausing runs

1.0

Iteration: 70; r_k: 0.251

1.0

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

26 of 26

Pausing runs

Iteration: 71; r_k: 0.250

1.0

9.0

7.8

6.6

5.4

4.2

3.0

1.8

0.6

26 of 26

Pausing runs

1.0

Iteration: 72; r_k: 0.248

0.8

0.6

0.4

0.2}

9.0

7.8

16.6

5.4

4.2

3.0

1.8

0.6

of 26

Pausing runs

Iteration: 73; r_k: 0.246

1.0

—9.0

o (7.8

16.6

5.4

4.2

3.0

—1.8

— 0.6

26 of 26

Pausing runs

Iteration: 74; r_k: 0.245

1.0

—9.0

o (7.8

16.6

5.4

4.2

3.0

—1.8

— 0.6

26 of 26

Pausing runs

Iteration: 75; r_k: 0.243

1.0

—9.0

o (7.8

16.6

5.4

4.2

3.0

—1.8

— 0.6

26 of 26

